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Abstract

The credal set operator is studied as a set-valued map-
ping that assigns the set of dominating probabilities
to a coherent lower prevision on some set of gam-
bles. It is shown that this mapping is affine on certain
classes of coherent lower previsions, which enables to
find a decomposition of credal sets. Continuity of the
credal set operator is investigated on finite universes
with the aim of approximating credal sets.
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1 Introduction

The main purpose of this paper is to investigate the
geometrical-topological relations between the two im-
portant classes of imprecise probability models of
Walley [12]: coherent lower previsions and credal sets
of linear previsions. The credal set operator is stud-
ied as a set-valued mapping that sends every coher-
ent lower prevision to the nonempty, weak∗-compact
and convex set of dominating linear previsions. Since
the set of all coherent lower previsions is a convex
subset of a linear topological space, the basic ques-
tion is whether the credal set operator acts as a mor-
phism between the corresponding mathematical ob-
jects. Precisely, the question is if the credal set oper-
ator is

(i) an affine mapping, that is, convex combina-
tions of coherent lower previsions are mapped
to the corresponding “convex combinations” of
the credal sets,

(ii) homeomorphism, provided a topology is intro-
duced on the set of all credal sets.

In Section 2 we introduce basic notions and notations.
The main tool used in this paper are the elements of
subdifferential (superdifferential) calculus developed
for continuous convex (concave) functions [10]. Theo-
rem 2 in Section 3 shows that every credal set can be

represented as the superdifferential. This idea goes
back to the solution of coalition games by core and
appears already in Aubin’s work [1]. Further, it is
proven that the credal set operator is an affine map-
ping on the class of all coherent lower probabilities de-
fined on the set of all subsets of some universe (Theo-
rem 3) and on the class of all coherent lower previsions
defined on the set of all the gambles (Corollary 1). It
is demonstrated in section 3.1 how the former result
can be used to obtain a decomposition of credal sets
of belief measures.

Section 4 is devoted to the topological properties. The
exposition is confined to the case of finite universes.
If the Hausdorff metric is introduced on the set of
all nonempty compact convex subset of the set of
all linear previsions, then the credal set operator is
a homeomorphism (Theorem 7). The consequence of
this result mentioned in section 4.1 makes possible
to approximate an arbitrary credal set by a “simple”
credal set in the Hausdorff metric. The study of con-
tinuity of credal set operator need not be limited to
finite universes. The principal difficulty in the general
non-metrizable case is how to define a topology on the
set of all nonempty, weak∗-compact convex subsets of
the dual of the Banach space of all gambles considered
in its weak∗ topology. Only a brief discussion of this
issue would, however, lead to introducing quite com-
plicated mathematical apparatus such as uniformities
defined on spaces of credal sets (cf. [2, Chapter II]).
Since such considerations go far beyond the intended
scope of the paper, the general case is left for separate
future investigations.

2 Basic Notions

In this section we introduce the notation and repeat
the notions and basic results from Walley’s theory of
imprecise probabilities [12]. Let Ω be a nonempty
set. A gamble is a bounded function Ω→ R. If a ∈ R,
then we use the same symbol a to denote a constant



gamble on Ω. By L we denote the Banach space of
all gambles endowed with the supremum norm ‖.‖∞,
that is,

‖f‖∞ = sup {|f(ω)| | ω ∈ Ω}, f ∈ L .

Let K ⊆ L . A lower prevision P is a real function
defined on K . If the set K contains only charac-
teristic functions of subsets of Ω, then P is called
a lower probability. The conjugate upper prevision
P is defined on −K = {f | −f ∈ K } by letting
P (f) = −P (−f) for every f ∈ −K . A coherent
lower prevision on L is a lower prevision P defined
on L that satisfies the following conditions for every
f, g ∈ L :

(i) P (f) ≥ inf {f(ω) | ω ∈ Ω},
(ii) P (λf) = λP (f), for every λ ≥ 0,
(iii) P (f + g) ≥ P (f) + P (g).

In particular, every coherent lower prevision on L
is a continuous concave function on the Banach
space L . If P is a lower prevision defined on K ,
then P is called coherent provided there exists a co-
herent lower prevision defined on L and coinciding
with P on K .

A linear prevision P on L is a self-conjugate coher-
ent lower prevision on L , that is, P (−f) = −P (f) for
every f ∈ L . Every linear prevision P is a positive lin-
ear functional on L with P (1) = 1. A real functional
defined on K is called a linear prevision on K if it
can be extended to a linear prevision on L . By L ∗

we denote the dual Banach space of L : the elements
of L ∗ are precisely the continuous linear functionals
L → R. Every linear prevision belongs to L ∗.

The sets of linear previsions appearing in the theory
of imprecise probabilities are usually not compact in
the norm topology of L ∗. If the Banach space L ∗ is
considered with the weak∗ topology, then the set P of
all linear previsions on L becomes a weak∗-compact
subset of L ∗ [12, p.610]. Let P be a coherent lower
prevision on K . The credal set of P is the set

M(P ) = {P ∈ P | P (f) ≥ P (f), f ∈ K }.

The terminology is not unified so M(P ) is called a core
or a structure by some authors. The credal set M(P )
is a nonempty, convex and weak∗ compact subset
of L ∗.

Given a coherent lower prevision P on K , put

EP (f) = inf{P (f) | P ∈M(P )}, for every f ∈ L ,

and call the function EP the natural extension of P .
Every natural extension EP is the (pointwise) small-
est coherent lower prevision that extends P to the
set L .

3 Superdifferential of Coherent Lower
Prevision

The notion of superdifferential of a continuous con-
cave function is one of the generalizations of the clas-
sical concept of Gâteaux derivative of a differentiable
function. In the next paragraph only basic definitions
and results are needed. The reader is referred to [10]
for details. Although the theory is developed for sub-
differentials of convex functions in [10], the analogous
definitions and theorems for superdifferentials of con-
cave functions are derived straightforwardly.

Let X be a Banach space and E be a nonempty open
convex subset of X. By X∗ we denote the dual space
of X. In this paragraph we always assume that ϕ is
a concave function E → R: for every x1, x2 ∈ E and
every α ∈ [0, 1], we have

ϕ(αx1 + (1− α)x2) ≥ αϕ(x1) + (1− α)ϕ(x2).

For every x0 ∈ E and x ∈ X, put

d+ϕ(x0)(x) = lim
t→0+

ϕ(x0 + tx)− ϕ(x0)
t

and call d+ϕ(x0)(x) the right-hand directional deriva-
tive of ϕ at x0. If follows from [10, Lemma 1.2] that
the limit defining d+ϕ(x0)(x) exists for every x0 ∈ E
and every x ∈ X, and that d+ϕ(x0) is a positively ho-
mogeneous concave function on X. The function ϕ is
said to be Gâteaux differentiable at x0 if the functional
d+ϕ(x0) : X → R is actually linear (not necessarily
continuous). Equivalently, the function ϕ is Gâteaux
differentiable at x0 ∈ E iff the limit

dϕ(x0)(x) = lim
t→0

ϕ(x0 + tx)− ϕ(x0)
t

exists for each x ∈ X, and in this case dϕ(x0) =
d+ϕ(x0). The functional dϕ(x0) is the Gâteaux
derivative of ϕ at x0.

Definition 1. Let x ∈ E. The superdifferential of ϕ
at x is the set

∂ϕ(x) = {ϕ∗ ∈ X∗ | ϕ∗(y) ≥ d+ϕ(x)(y), y ∈ X}.

The superdifferential of ϕ at x can be equivalently
expressed as

∂ϕ(x) = {ϕ∗ ∈ X∗ | ϕ∗(y−x) ≥ ϕ(y)−ϕ(x), y ∈ E}.
(1)

The elements of ∂ϕ(x) are called supergradients of
ϕ at x. Each supergradient ϕ∗ ∈ X∗ is viewed as
a plausible candidate for a derivative of ϕ at x. The
following existence result is well-known ([10, Proposi-
tion 1.11]).



Theorem 1. Let X be a Banach space and E be
a nonempty open convex subset of X. If the concave
function ϕ is continuous at x ∈ E, then ∂ϕ(x) is
a nonempty, convex and weak∗-compact subset of X∗.

For example, let X = E = R2 and ϕ(x) = ϕ(x1, x2) =
−|x1| − |x2|, for every x = (x1, x2) ∈ R2. Since
ϕ is continuous and concave, the superdifferential
of ϕ at 0 exists. The direct calculation shows that
∂ϕ(0) equals the convex hull of the set of vectors
{(1, 1), (1,−1), (−1, 1), (−1,−1)}.

The next theorem enables to identify the credal set of
P with the set of all supergradients at 1 of the natural
extension of P .
Theorem 2. Let K ⊆ L . If P is a coherent lower
prevision on K and EP is the corresponding natural
extension, then

M(P ) = ∂EP (1).

Moreover, if EP is Gâteaux differentiable at 1, then
P is a linear prevision on K .

Proof. Let P ∈M(P ). Then P ≥ EP and P (1) = 1 =
EP (1), which implies for every gamble f that

P (f)− P (1) ≥ EP (f)− EP (1).

Since every linear prevision is a norm continuous lin-
ear functional, the inequality above means that P is
a supergradient of EP at 1 by (1).

Suppose, on the other hand, that P ∗ ∈ ∂EP (1). The
equation (1) gives that for every gamble f ∈ L we
have

P ∗(f − 1) ≥ EP (f)− 1. (2)

Hence for every real α > 0,

P ∗(αf − 1) ≥ EP (αf)− 1,

and after dividing by α,

P ∗(f)− P ∗(1)
α
≥ EP (f)− 1

α
.

Letting α→ 0 leads to P ∗(f) ≥ EP (f). If f = 0, then
P ∗(−1) ≥ −1 from (2) so that P ∗(1) = 1. The func-
tional P ∗ is a linear prevision as P ∗ is self-conjugate
and satisfies

P ∗(f) ≥ EP (f) ≥ inf{f(ω) | ω ∈ Ω}

for every f ∈ L . Since EP (f) = P (f) whenever
f ∈ K , we get P ∗ ∈M(P ).

To prove the second assertion, assume that EP is
Gâteaux differentiable at 1. It follows from [10,
Proposition 1.8] that this is equivalent to

∂EP (1) = {dEP (1)}.

Since M(EP ) = ∂EP (1), this means that the con-
tinuous concave function EP is dominated by the
unique continuous linear functional dEP (1). The
Hahn-Banach theorem then implies that EP itself
must be linear and hence, a fortiori, P must be a lin-
ear prevision.

The second assertion of the previous theorem can not
be reversed: if P is a linear prevision on K , then
the natural extension EP is not in general Gâteaux
differentiable at 1.

On the set 2L ∗
of all subsets of L ∗ we consider the

multiplication of a set A ⊆ L ∗ by a real number
α and the (Minkowski) sum of sets A1 ⊆ L ∗ and
A2 ⊆ L ∗:

αA = {αP ∗ | P ∗ ∈ A},
A1 ⊕A2 = {P ∗1 + P ∗2 | P ∗1 ∈ A1, P

∗
2 ∈ A2}.

Let K1,K2 be convex subsets of linear spaces X1, X2,
respectively. A mapping a : K1 → K2 is affine, when-
ever for every convex combination

∑n
i=1 αixi of ele-

ments x1, . . . , xn ∈ K1, we have

a

(
n∑
i=1

αixi

)
=

n∑
i=1

αia(xi).

Let 2Ω be the set of all subsets of Ω. A lower proba-
bility P on 2Ω is supermodular if

P (A ∪B) + P (A ∩B) ≥ P (A) + P (B)

for every A,B ∈ 2Ω.

Theorem 3. If P 1, . . . , Pn are supermodular coher-
ent lower probabilities on 2Ω and αi ∈ [0, 1], i =
1, . . . , n, are such that

∑n
i=1 αi = 1, then

M

(
n∑
i=1

αiP
i

)
=

n⊕
i=1

αiM(P i). (3)

Proof. The lower probability
∑n
i=1 αiP

i is coherent
[12, Theorem 2.6.4]. The coherent lower probability∑n
i=1 αiP

i is supermodular since each P i is super-
modular, so the set of all supermodular coherent lower
probabilities on 2Ω is a convex subset of R2Ω

. It fol-
lows from [8, Theorem 5.2] that the natural extension
EP of any supermodulat coherent lower probability P
on 2Ω coincides with the asymmetric Choquet integral
IaP : L → R, where

IaP (f) =
∫ 0

−∞
P (f−1((t,∞)))− P (Ω) dt

+
∫ ∞

0

P (f−1((t,∞))) dt,



for every f ∈ L . A routine verification shows that the
mapping sending each supermodular coherent lower
probability P to IaP is affine, hence

EPn
i=1 αiP i = IaPn

i=1 αiP i =
n∑
i=1

αiI
a
P i =

n∑
i=1

αiEP i

Theorem 2 together with the preceding equality give

M

(
n∑
i=1

αiP
i

)
= ∂

(
EPn

i=1 αiP i

)
(1) =

= ∂

(
n∑
i=1

αiEP i

)
(1).

It follows directly from the definition of superdiffer-
ential that for every i = 1, . . . , n,

∂(αiEP i)(1) = αi∂(EP i)(1). (4)

By the Moreau-Rockafellar theorem [10, Theorem
3.23], the equality (4) and Theorem 2, we obtain

∂

(
n∑
i=1

αiEP i

)
(1) =

n⊕
i=1

∂(αiEP i)(1) =

=
n⊕
i=1

αi∂(EP i)(1) =
n⊕
i=1

αiM(P i).

One of key ingredients in the above proof is the affin-
ity of the natural extension operator P 7→ EP de-
rived from the representation of the natural extension
by the assymetric Choquet integral [8, Theorem 5.2].
This suggests the following general result.

Theorem 4. Let K be a set of gambles and CK be
the convex set of all coherent lower probabilities on
K . If the mapping

P ∈ CK 7→ EP

is affine, then the equality (3) holds true for every
P 1, . . . , Pn ∈ CK .

Proof. Let P 1, . . . , Pn ∈ CK and αi ∈ [0, 1], i =
1, . . . , n, be such that

∑n
i=1 αi = 1. Then

EPn
i=1 αiP i =

n∑
i=1

αiEP i ,

so

M

(
n∑
i=1

αiP
i

)
= ∂

(
n∑
i=1

αiEP i

)
(1),

and the equality (3) again follows from the Moreau-
Rockafellar theorem [10, Theorem 3.23] together
with (4) and Theorem 2.

Let S be the set of all nonempty weak∗-compact con-
vex subsets of P. In the sequel we will study the
properties of the set-valued mapping

M(.) : P 7→M(P )

that sends a coherent lower probability on some set
of gambles K to a credal set from S. A superficial
look at the equality (3) would then suggest that this
mapping is affine on the class of coherent lower prob-
abilities mentioned in Theorem 3. A necessary con-
dition is that the codomain S of M is a convex set.
But this notion of convexity is not even defined in the
present framework since the set 2L ∗

endowed with the
Minkowski sum of sets and the scalar multiplication of
a set is not a linear space. The main difficulty is that
the algebra (2L ∗

,⊕) is not a group but only a commu-
tative monoid. The properties of the Minkowski sum
and the scalar multiplication of sets defined above can
be summarized as follows.

Proposition 1. The set 2L ∗
together with the

Minkowski sum ⊕ is a real semilinear space, that is:

(i) the algebra (2L ∗
,⊕) is a commutative monoid

with the neutral element {0},
(ii) α(βA) = (αβ)A, for every α, β ∈ R

and every A ∈ 2L ∗
,

(iii) 1A = A,
(iv) 0A = {0},
(v) α(A1 ⊕A2) = (αA1)⊕ (αA2),

for every A1,A2 ∈ 2L ∗
.

Semilinear spaces, which generalize linear spaces, are
algebraic structures close to semirings [5]. The defi-
nitions of convexity and affine maps can be directly
carried over to a more general framework of semilin-
ear spaces. In that follows these generalized defini-
tions are tacitly assumed. Thus we will say that S is
convex (as a subset of 2L ∗

) if

αA1 ⊕ (1− α)A2 ∈ S

holds true for every A1,A2 ∈ S and every α ∈ [0, 1].

Proposition 2. The set S is a convex subset of the
real semilinear space 2L ∗

.

Proof. Consider any A1,A2 ∈ S and a real number
α ∈ [0, 1]. Put A = αA1 ⊕ (1 − α)A2. Then A is
a nonempty convex subset of P since both A1,A2 are
nonempty and convex. As both αA1 and (1 − α)A2

are weak∗-closed, their Minkowski sum A is a weak∗-
closed subset of P, and thus weak∗-compact.

With these facts in mind, it is safe to interpret the
conclusions of Theorem 3 and 4 as expressing the fact
that “the mapping M is affine”. We will show that



the mapping M is an affine isomorphism1 from the
convex set C of all coherent lower previsions on L to
S. The essential result is the following theorem [12,
Theorem 3.6.1].

Theorem 5 (Walley). The mapping M is a bijection
from C to S. The inverse mapping M−1 sends A ∈ S
to the coherent lower prevision

M−1(A)(f) = inf{P (f) | P ∈ A}, f ∈ L .

Corollary 1. The mapping M is an affine isomor-
phism of C and S.

Proof. The mapping M is one-to-one by Theorem 5.
It suffices to show that P ∈ C 7→ EP is affine since
this gives the affinity of M by Theorem 4. However,
this is trivial as P = EP for every P ∈ C.

Hence the mutual correspondence between the two
different models of imprecise probabilities (coherent
lower previsions and credal sets) introduced by Walley
is retained also on the geometric level.

3.1 Decomposition of credal sets

Theorem 3 can be useful in situations in which a co-
herent lower probability P on 2Ω is a convex combina-
tion of the coherent lower probabilities whose credal
sets have a special shape (such as simplices). In this
case, the credal set of P is decomposed into the con-
vex combination of the respective “basic” credal sets.
In particular, Theorem 3 is an infinite-dimensional
generalization of Corollary 4 from [3], where a similar
result is achieved for finite Ω and totally monotone set
functions investigated in the framework of cooperative
games. We will explicitly show how Theorem 3 can
be applied to the credal sets of belief measures [11]
by reformulating [3, Corollary 4] as a consequence of
Theorem 3 in this paper.

Theorem 6. Let Ω be finite, P be a belief measure
on 2Ω and µP its Möbius transform. Then

M(P ) =
⊕
A⊆Ω

µP (A)SA,

where SA is the simplex of probabilities on 2Ω sup-
ported by A, that is, SA = {P ∈ P | P (A) = 1}.

Proof. The set SA is a simplex since it is a face of the
simplex of all probabilities on 2Ω. A belief measure P
is a supermodular coherent lower probability on 2Ω, so

1An affine isomorphism is a bijective affine mapping be-
tween two convex subsets of real semilinear spaces. Its inverse
is then necessarily an affine mapping too.

Theorem 3 can be employed. Since
∑
A⊆Ω µ

P (A) = 1,
where µP (A) ≥ 0 for each A ⊆ Ω, and

P =
∑
A⊆Ω

µP (A)PA,

where the set functions

PA(B) =

{
1, A ⊆ B,
0, otherwise,

are belief functions, it suffices to realize that
M(PA) = SA.

4 Continuity of Credal Set Mapping

The main purpose of this section is to study the topo-
logical properties of the credal set operator. We will
confine the investigations to the case of finite Ω. The
first necessary step is an introduction of topologies on
both C and S.

If Ω = {1, . . . , n}, then the set of all gambles L can
be identified with the Euclidean space Rn. A gam-
ble is then viewed as an n-dimensional vector f =
(f1, . . . , fn) ∈ Rn. The dual space L ∗ is identified
with Rn. If 〈., .〉 denotes the usual scalar product on
Rn, then every linear prevision P on L canonically
corresponds to the vector of reals p = (p1, . . . , pn)
such that 〈p, 1〉 = 1 and pi ≥ 0 for each i = 1, . . . , n.
We have

P (f) = 〈p, f〉, f ∈ L . (5)

The pointwise limit of coherent lower previsions on
any set of gambles K is a coherent lower prevision
on K . Consequently, the set C is a closed convex
subset of the locally convex space RL . Let ‖.‖ be the
Euclidean norm on Rn. The topology of pointwise
convergence on C is described by the metric

∆(P 1, P 2) = max {|P 1(f)− P 2(f)| | ‖f‖ ≤ 1}.

Precisely, the sequence (Pn) in C pointwise con-
verges to P ∈ C iff ∆(Pn, P ) → 0 (see [7, Theorem
1.3.5,p.133]).

The set S contains all the nonempty compact convex
subsets of

P = {p ∈ Rn | 〈p, 1〉 = 1, pi ≥ 0, i = 1 . . . , n}.

The topology on S can be introduced by the Hausdorff
metric [2, Chapter II]. For every A ∈ S and every
p ∈ P, define

dA(p) = min {‖p− p′‖ | p′ ∈ A}. (6)

If A1,A2 ∈ S, then denote

eH(A1,A2) = sup {dA2(p1) | p1 ∈ A1}.



The Hausdorff metric ∆H on S is defined as

∆H(A1,A2) = max {eH(A1,A2), eH(A2,A1)},

for every A1,A2 ∈ S.

The topology corresponding to the metric ∆H is
called the Hausdorff metric topology. The Hausdorff
metric topology depends only on the topology of P:
if any metric equivalent to the Euclidean metric is
used in place of ‖.‖ in (6), the resulting metric topol-
ogy on S would coincide with the Hausdorff metric
topology. Indeed, it follows from [2, Theorem II-6]
that the Hausdorff metric topology on the family K of
nonempty compact subsets of P is generated by the
sets

{K ∈ K | K ⊆ U, U open in P}

and
{K ∈ K | K ∩ V 6= ∅, V open in P}.

The Hausdorff metric topology of S arises as a sub-
space topology from K. Hence it is immaterial if the
Euclidean norm or the supremum norm originally de-
fined on the space of gambles is used.

Theorem 7. Let Ω = {1, . . . , n}. If S is endowed
with the Hausdorff metric topology, then the mapping
M : C → S is an affine isomorphism and homeomor-
phism.

Proof. The mapping M is an affine isomorphism by
Corollary 1 so that it remains to prove the continuity
in both directions. To this end, we use the following
convergence result, which can be easily deduced from
[7, Corollary 3.3.8, p.156]: if (An) is a sequence in S
and A ∈ S, then An → A in the Hausdorff metric iff
the sequence of functions

((f ∈ Rn 7→ inf {〈p, f〉 | p ∈ An})n)

pointwise converges to the function

f ∈ Rn 7→ inf {〈p, f〉 | p ∈ A}.

To show that the mapping M is continuous, consider
a sequence (Pn) converging to P in C. Theorem 5
and (5) together yield

Pn(f) = M−1(M(Pn))(f) = inf {〈p, f〉 | p ∈M(Pn)}

and

P (f) = M−1(M(P ))(f) = inf {〈p, f〉 | p ∈M(P )}.

This implies M(Pn) → M(P ) in the Hausdorff met-
ric. Continuity of the inverse mapping M−1 is shown
similarly.

4.1 Approximation of credal sets

By Theorem 5 of Walley every nonempty compact
convex subset A ∈ S is a credal set of the coher-
ent lower prevision M−1(A). Although every credal
set is characterized by the Krein-Milman theorem as
the closed convex hull of its vertices, it can be con-
venient to find a class of subsets of S whose mem-
bers have a particular geometric structure and which
is sufficient for an approximation of every credal set.
The polytopes from S are natural candidates for such
a task. A polytope is the convex hull of finitely-many
points in Rn. For our purposes it will be even enough
to focus on so-called simple polytopes. A polytope is
called simple if each of its vertices is contained in the
same number of facets. For example, a cube or a sim-
plex are simple polytopes, an Egyptian pyramid is not
a simple polytope. It was proven in [9] that the credal
set of every possibility measure is a simple polytope.
The class of simple polytopes is considered to be com-
putationally tractable: see [13] or the discussion in [9,
p.243-244] and the references therein.

Theorem 8. Let Ω = {1, . . . , n} and S be endowed
with the Hausdorff metric topology. If P is any co-
herent lower prevision on a set of gambles K ⊆ Rn,
then there exists a sequence (Sn) of simple polytopes
in S such that

(i) Sn →M(P ) in the Hausdorff metric,
(ii) M−1(Sn)→ P pointwise on K ,

(iii) M−1(Sn) → P uniformly on each compact sub-
set of K .

Proof. (i) is basically Theorem 2.8 in [4], which says
that simple polytopes form a dense set in S. The
assertion (ii) follows from (i) in conjunction with
Theorem 7: the sequence of coherent lower previ-
sions M−1(Sn) pointwise converges to P on K as
M−1 is continuous. The last assertion (iii) is a well-
known property of the convergence of concave func-
tions Rn → R (see [7, Theorem B.3.1.4], for in-
stance).

The proof of [4, Theorem 2.8] is based on a strong
compactness argument: given any open cover of
a polytope K by balls with a given diameter and with
centers in the extreme boundary of K, there exists
a finite refinement of this cover. The idea is analo-
gous to inscribing a polygon into a circle. Hence the
theorem does not give an algorithm for finding the
convergent sequence of simple polytope. Nevertheless,
at least in case that M(P ) is a polytope, it is possible
to explicitly find a simple polytope “sufficiently close
to M(P )” [13].



5 Conclusions

In this contribution we identified two main cases in
which the credal set mapping is affine (Theorem 3
and Corollary 1). Yet none of them covers the whole
variety of coherent lower previsions since “complete-
ness” of their domains is required: the set of gambles
is required to be the set of all events or the set of all
the gambles. Theorem 4 then gives a sufficient condi-
tion enabling to get rid of those assumptions: it is the
affinity of the natural extension operator. In general,
the natural extension operator is not stable under the
usual operations with imprecise probabilities: it need
not preserve neither convex combinations nor limits
of convergent sequences of coherent lower previsions
[6, Section 5]. In future investigations our aim will
be to single out the sets of gambles satisfying the as-
sumption of Theorem 4 and to extend the material
presented in Section 4 to infinite universes.
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paiements latéraux. C. R. Acad. Sci. Paris Sér.
A, 279:891–894, 1974.

[2] C. Castaing and M. Valadier. Convex analysis
and measurable multifunctions. Springer-Verlag,
Berlin, 1977. Lecture Notes in Mathematics, Vol.
580.

[3] V.I. Danilov and G.A. Koshevoy. Cores of co-
operative games, superdifferentials of functions,
and the Minkowski difference of sets. J. Math.
Anal. Appl., 247(1):1–14, 2000.

[4] G. Ewald. Combinatorial convexity and algebraic
geometry, volume 168 of Graduate Texts in Math-
ematics. Springer-Verlag, New York, 1996.

[5] J.S. Golan. Semirings and their applications.
Kluwer Academic Publishers, Dordrecht, 1999.

[6] R. Hable. Data-based decisions under complex
uncertainty. PhD thesis, Ludwig-Maximilians-
Universität (LMU) Munich, 2009.

[7] J.-B. Hiriart-Urruty and C. Lemaréchal. Fun-
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